The Nautilus at 60 — Nuclear Power Tested in an Idaho Desert

450px-Nautilus_(SSN_571)_Groton_CT_2002_May_08Just over 60 yeas ago, on September 30, 1954, USS Nautilus, the world’s first nuclear powered submarine was commissioned in New London, Connecticut. Following commissioning she continued trials and testing, until she put to sea for the first time  on January 17, 1955 and signaled her historic message: “Underway on nuclear power.”  USS Nautilus was also the first submarine to complete a submerged transit to the North Pole on 3 August 1958.

What made the Nautilus unique was her nuclear reactor, the first to be put on a submarine. Initial testing of the reactor was done, not on the ship, but at a top secret Navy facility, hundreds of miles from the ocean in the high desert of Idaho.  Recently the Atlantic Monthly re-posted an article from 1959, by Commander E. E. Kintner, a Navy officer closely involved with the testing. The overall project was managed by then Captain Rickover.  From Admiral Rickover’s Gamble:

Because so many unknowns could be solved only in theory prior to the operation of a complete atomic power system, it was decided early that a full-scale land-based model should be built at the National Reactor Testing station in Idaho. This prototype was named STR Mark I. The propulsion plant which followed in the Nautilus would be STR Mark II…

In the early stages of design, the problems of obtaining some small amount of power from uranium fission seemed so overwhelming that it was planned to build Mark I as a “breadboard” arrangement, with machinery and piping systems spread out over a large floor area to allow easy access for installation, test, modification, or replacement. Rickover opposed this plan. He felt that years would be lost by breadboarding, since it required an additional stage in the development—the redesign of an operating breadboard model into a submarine hull. After several bitterly argued discussions within the project, Rickover made the decision to build Mark I as a land-based submarine to all the Naval specifications later to be required of Mark II. Here was the second example of courageous leadership, which contributed directly to the Nautilus success.

And so Mark I, although located almost as far from sea water as possible in the North American continent, was a true seagoing power plant—no shore-based engineering short cuts were allowed in its construction….

As Operation of Mark I was about to begin in late 1952, there remained many unanswered questions, and there was not always assurance that satisfactory solutions would ever be found. Even Rickover, returning for a visit to Mark I at this time, said, “If the Nautilus makes two knots on nuclear propulsion she will be a success.”…

The Mark I reactor performed better than even her engineers had hoped. If was decided to attempt to simulate a full power trans-Atlantic voyage.  It was a risky move. If the reactor failed it could put the engineers running the test at risk. Likewise, a major failure would put Captain Rickover’s career at risk.  At first all went well, then difficulties arose.

At the sixtieth hour, however, difficulties began. Carbon dust from the brushes depositing in the windings caused difficulty in the vital electrical generating sets. Nuclear instrumentation, operating perfectly at the beginning of the run, became erratic, and the crews could not be sure what was happening within the reactor core. One of the large pumps which kept the reactor cool by circulating water through it began making a worrisome, intermittent whining sound. We had not had any check on “crud” build-up; we feared that heat transfer would be so reduced by this point that the core would burn up. The most pressing problem, however, was caused by the failure at the sixty-fifth hour of a tube in the main condenser into which exhausted turbine steam was being discharged. Steam pressure fell off rapidly.

The Westinghouse manager responsible for the operation of the plant strongly recommended discontinuing the run. In Washington, the technical directors of the Naval Reactors Branch was so concerned that he called a meeting of all its senior personnel, who urged Rickover to terminate the test at once. But the Captain was adamant that it should continue until an unsafe situation developed. “If the plant has a limitation so serious,” he said, “now is the time to find out. I accept full responsibility for any casualty.” Rickover had twice been passed over by Naval selection boards for promotion to Rear Admiral. As a result of congressional action, he was to appear within two weeks for an unprecedented third time. If the Mark I had been seriously damaged, Rickover’s prospects for promotion and his Naval career were ended.

The tensions surrounding the test increased the challenge to the crews, and as each watch came on duty it resolved it would not be responsible for ending the run prematurely. Crew members worked hard to repair those items which could be repaired while the plant was in operation.

Finally, the position indicator on the chart reached Fastnet. A nuclear-powered submarine had, in effect, steamed at full power non-stop across the Atlantic without surfacing. When an inspection was made of the core and the main coolant pump, no “crud” or other defects which could not de corrected by minor improvements were found. It was assured that the Nautilus could cross an ocean at full speed submerged.

A month after nuclear power was first produced, the most doubting among those who had participated in the STR project knew that atomic propulsion of ships was feasible, that it was only a matter of time before the technology developed for Mark I would bring about a revolution in Naval engineering, strategy, and tactics. We knew, too, that industrial nuclear power could be built on the same technological foundations. The Pressurized Water Reactor at Shippingport, Pennsylvania — the world’s first solely industrial power reactor — was in fact developed from STR experience under Admiral Rickover’s direction.

To those of us who had participated in the STR project, who knew how many chances were taken, how far previous engineering knowledge had been extrapolated, the fact that all the unknowns had turned out in our favor was a humbling experience. Rickover, paraphrasing Pasteur, put it this way: “We must have had a horseshoe around our necks. But then Nature seems to want to work for those who work hardest for themselves.”

STR Mark I is now a flexible facility providing much of the experimental information for the Navy’s nuclear propulsion program, which today includes thirty-three submarines, a guided missile cruiser, and the first nuclear-powered aircraft carrier. It provides the practical training for all the hundreds of officers and enlisted men wh will man our nuclear fleet. The courage, the will, the judgment and resourceful which went into STR Mark I have made the United States Submarine Nautilus an outstandingly successful venture in man’s long struggle with nature.

Read the original article here: Admiral Rickover’s Gamble — The Landlocked Submarine

USS Nautilus broke all existing records for submarine endurance and performance. She was finally decommissioned in 1980 and is now a museum ship at the Submarine Force Library and Museum on the Thames River near Groton, Connecticut.

Comments are closed.